
Bug Byte

Bug Byte
I recently came across this fantastic puzzle Bug Byte devised by the folks at Jane Street
from Numberphile.

Vamshi Jandhyala 1

https://www.janestreet.com/bug-byte/

Bug Byte

Solution
Jane Street puzzles have a reputation for being fiendishly difficult so I didn’t want to tackle
them by hand. I wanted to squash this recreational “bug” using heavy duty computational
machinery 😀. Given that this is a puzzle involving Graph Theory and Constraint
Programming, I immediately got to work using my favourite Python libraries in this space,
networkx and the venerable z3.

First constraint
There are 24 edges in the graph and each edge has to have a distinct weight between 1 and
24. As the weights of 4 edges have already been provided, we only need 20 variables for the
weights of the remaining edges. The code below shows how the above constraint can be
implemented using z3.

w = [Int("w%d" % i) for i in range(20)]
s = Solver()
s.add(Distinct(w))
for i in range(20):
 s.add(And(w[i] >= 1, w[i] <= 24))

Second constraint
The sum of edges directly connected to white nodes with a green border is equal to the
number inside the node. Once we assign the weight variables to each of the edges, the code
below shows how to implement this straightforward constraint in z3.

s.add(w[0] + w[1] == 17)
s.add(w[0] + w[2] == 3)
s.add(w[3] + w[4] + w[6] + w[7] == 54)
s.add(24 + w[7] + w[8] + w[9] + w[13] == 60)
s.add(w[5] + w[9] + w[10] + 20 == 49)
s.add(w[13] + w[14] + w[15] + 20 == 75)
s.add(w[11] + w[6] + w[12] + 7 + 24 == 79)
s.add(w[12] + w[16] + w[17] == 29)
s.add(w[14] + w[17] + w[19] == 25)
s.add(7 + w[16] + w[18] == 39)

Third constraint
For each green node, the number inside the node represents the sum of the edge weights of
a simple non intersecting path starting from that node. This is the trickiest constraint of the
three but thankfully we can get networkx to do the heavylifting.

Graph Creation
We first create a weighted graph using the code below.

G = nx.Graph()
G.add_edge(1, 2, weight=w[0])
G.add_edge(1, 4, weight=w[1])
G.add_edge(2, 5, weight=w[2])
G.add_edge(4, 5, weight=12)

Vamshi Jandhyala 2

Bug Byte

G.add_edge(4, 7, weight=w[4])
G.add_edge(3, 7, weight=w[3])
G.add_edge(5, 9, weight=w[5])
G.add_edge(6, 9, weight=w[10])
G.add_edge(7, 11, weight=w[7])
G.add_edge(8, 11, weight=w[8])
G.add_edge(9, 11, weight=w[9])
G.add_edge(7, 10, weight=w[6])
G.add_edge(10, 18, weight=w[11])
G.add_edge(10, 14, weight=7)
G.add_edge(10, 13, weight=w[12])
G.add_edge(11, 10, weight=24)
G.add_edge(11, 12, weight=w[13])
G.add_edge(9, 12, weight=20)
G.add_edge(13, 14, weight=w[16])
G.add_edge(12, 16, weight=w[14])
G.add_edge(12, 17, weight=w[15])
G.add_edge(13, 16, weight=w[17])
G.add_edge(14, 15, weight=w[18])
G.add_edge(16, 15, weight=w[19])

Implementing path constraints
From each green node, we find all the simple paths to all other nodes using the
all_simple_paths function from networkx and calculate the weight of each path in terms
of the weight variables. The thing here to note is that we have to use an “Or” constraint as
the number inside each green node has to match the total path weight for one of the paths.
The other insight is that the above logic doesn’t change whether there there is one number
or multiple numbers in each green node. These insights lead to the simple and elegant code
below.

for start_node, total in [(3, 31), (6, 8), (4, 19), (4, 23), (8, 6), (8,
9), (8, 16)]:
 constraints = []
 for node in set(range(1, 19)) - set([start_node]):
 for path in nx.all_simple_paths(G, start_node, node):
 constraints.append(nx.path_weight(G, path, weight="weight") ==
total)
 s.add(Or(constraints))

Checking the model for satisfiability
The last part involves checking the model for satisfiability, finding the shortest path
between the two nodes containing the stars, mapping the edge weights in the shortest path
to alphabets. The code to do that is given below.

if s.check() == sat:
 m = s.model()
 for u, v in G.edges():
 if not (isinstance(G[u][v]["weight"], int)):
 G[u][v]["weight"] = m.evaluate(G[u][v]["weight"]).as_long()

sp = list(nx.shortest_path(G, 5, 15, weight="weight"))

Vamshi Jandhyala 3

Bug Byte

for u, v in zip(sp, sp[1:]):
 print(chr(ord("@") + G[u][v]["weight"]))

Full Python code listing
Putting all the above code together, you will see that the answer is LINKED.

from z3 import Int, Distinct, And, Or, Solver
import networkx as nx

w = [Int("w%d" % i) for i in range(20)]
s = Solver()
s.add(Distinct(w))
for i in range(20):
 s.add(And(w[i] >= 1, w[i] <= 24))

s.add(w[0] + w[1] == 17)
s.add(w[0] + w[2] == 3)
s.add(w[3] + w[4] + w[6] + w[7] == 54)
s.add(24 + w[7] + w[8] + w[9] + w[13] == 60)
s.add(w[5] + w[9] + w[10] + 20 == 49)
s.add(w[13] + w[14] + w[15] + 20 == 75)
s.add(w[11] + w[6] + w[12] + 7 + 24 == 79)
s.add(w[12] + w[16] + w[17] == 29)
s.add(w[14] + w[17] + w[19] == 25)
s.add(7 + w[16] + w[18] == 39)

G = nx.Graph()
G.add_edge(1, 2, weight=w[0])
G.add_edge(1, 4, weight=w[1])
G.add_edge(2, 5, weight=w[2])
G.add_edge(4, 5, weight=12)
G.add_edge(4, 7, weight=w[4])
G.add_edge(3, 7, weight=w[3])
G.add_edge(5, 9, weight=w[5])
G.add_edge(6, 9, weight=w[10])
G.add_edge(7, 11, weight=w[7])
G.add_edge(8, 11, weight=w[8])
G.add_edge(9, 11, weight=w[9])
G.add_edge(7, 10, weight=w[6])
G.add_edge(10, 18, weight=w[11])
G.add_edge(10, 14, weight=7)
G.add_edge(10, 13, weight=w[12])
G.add_edge(11, 10, weight=24)
G.add_edge(11, 12, weight=w[13])
G.add_edge(9, 12, weight=20)
G.add_edge(13, 14, weight=w[16])
G.add_edge(12, 16, weight=w[14])
G.add_edge(12, 17, weight=w[15])
G.add_edge(13, 16, weight=w[17])
G.add_edge(14, 15, weight=w[18])
G.add_edge(16, 15, weight=w[19])

for start_node, total in [(3, 31), (6, 8), (4, 19), (4, 23), (8, 6), (8,
9), (8, 16)]:
 constraints = []
 for node in set(range(1, 19)) - set([start_node]):

Vamshi Jandhyala 4

Bug Byte

 for path in nx.all_simple_paths(G, start_node, node):
 constraints.append(nx.path_weight(G, path, weight="weight")
== total)
 s.add(Or(constraints))

if s.check() == sat:
 m = s.model()
 for u, v in G.edges():
 if not (isinstance(G[u][v]["weight"], int)):
 G[u][v]["weight"] = m.evaluate(G[u][v]["weight"]).as_long()

sp = list(nx.shortest_path(G, 5, 15, weight="weight"))
for u, v in zip(sp, sp[1:]):
 print(chr(ord("@") + G[u][v]["weight"]))

Vamshi Jandhyala 5

	Bug Byte
	Solution
	First constraint
	Second constraint
	Third constraint
	Graph Creation
	Implementing path constraints

	Checking the model for satisfiability
	Full Python code listing

